Cardiovascular changes under normoxic and hypoxic conditions in the air-breathing teleost Synbranchus marmoratus: importance of the venous system.
نویسندگان
چکیده
Synbranchus marmoratus is a facultative air-breathing fish, which uses its buccal cavity as well as its gills for air-breathing. S. marmoratus shows a very pronounced tachycardia when it surfaces to air-breathe. An elevation of heart rate decreases cardiac filling time and therefore may cause a decline in stroke volume (V(S)), but this can be compensated for by an increase in venous tone to maintain stroke volume. Thus, the study on S. marmoratus was undertaken to investigate how stroke volume and venous function are affected during air-breathing. To this end we measured cardiac output (Q), heart rate (f(H)), central venous blood pressure (P(CV)), mean circulatory filling pressure (MCFP), and dorsal aortic blood pressures (P(DA)) in S. marmoratus. Measurements were performed in aerated water (P(O2)>130 mmHg), when the fish alternated between gill ventilation and prolonged periods of apnoeas, as well as during hypoxia (P(O2)<or=50 mmHg), when the fish changed from gill ventilation to air-breathing. Q increased significantly during gill ventilation compared to apnoea in aerated water through a significant increase in both f(H) and V(S). P(CV) and MCFP also increased significantly. During hypoxia, when the animals surface to ventilate air, we found a marked rise in f(H), P(CV), MCFP, Q and V(S), whereas P(DA) decreased significantly. Simultaneous increases in P(CV) and MCFP in aerated, as well as in hypoxic water, suggests that the venous system plays an important regulatory role for cardiac filling and V(S) in this species. In addition, we investigated adrenergic regulation of the venous system through bolus infusions of adrenergic agonists (adrenaline, phenylephrine and isoproterenol; 2 microg kg(-1)). Adrenaline and phenylephrine caused a marked rise in P(CV) and MCFP, whereas isoproterenol led to a marked decrease in P(CV), and tended to decrease MCFP. Thus, it is evident that stimulation of both alpha- and beta-adrenoreceptors affects venous tone in S. marmoratus.
منابع مشابه
THE EFFECT OF ARTERIAL O2 SATURATION AND HE ART RATE ON BLOOD PRESSURE DURING HYPOXIA
A periodic increase in blood pressure (BP) occurs during apneic episodes in patients with obstructive sleep apnea (OSA). Several factors including hypoxemia and an increase in heart rate (HR) were reported to be responsible for this increased BP. To examine the contribution of these two factors in increasing BP, 35 healthy male subjects (mean age±SD= 23.64±3.80) were studied in three experi...
متن کاملHY POXIA AND I TS INFLUEN CES ON THE CARDIOVASCULAR AND RESPIRATORY SYSTEMS OF SPONTANEOUSLY BREATHING CATS
Effects of acute systemic hypoxia on the cardiovascular system (CYS) and respiration of spontaneously breathing cats were studied in two conditions. 1): Hypoxic air (6-8% 02 in N2) was given to the animal to induce systemic hypoxia for 20 minutes. Hyperventilation at this condition lowered arterial C02 tension (PaC02 hypocapnia). 2): In the second run, induction of hypocapnia was prevented ...
متن کاملMetabolic adjustments during semi-aestivation of the marble swamp eel (Synbranchus marmoratus, Bloch 1795)--a facultative air breathing fish.
Metabolic changes, principally in intermediary metabolism and nitrogen excretion, were investigated in the marble swamp eel (Synbranchus marmoratus) after 15 and 45 days of artificially induced semi-aestivation. Glucose, glycogen, lactate, pyruvate, free amino acids, triglycerides, ammonia, urea, and urate contents were determined in liver, kidney, white muscle, heart, brain, and plasma. Lactat...
متن کاملIntracellular and extracellular acid-base regulation in the tropical fresh-water teleost fish Synbranchus marmoratus in response to the transition from water breathing to air breathing.
In the tropical fresh water fish, Synbranchus marmoratus, transition from water breathing to air breathing, induced by reduction of oxygen partial pressure (PO2) in the environmental water below 16 mmHg, causes a considerable rise in the arterial partial pressure of carbon dioxide (PCO2), from 5.6 to 26 mmHg on the average (half time of the rise between 2 and 6.5 h). The associated fall in arte...
متن کاملEFFECTS OF HYPOXIC HYPOXIA AND CARBON MONOXIDE-INDUCED HYPOXIA ON THE CARDIOVASCULAR SYSTEM AND REGIONAL BLOOD FLOW OF THE ANESTHETIZED CAT
The purpose of this study was to investigate the potential responses of the cardiovascular system and regional blood flow to hypoxic hypoxia (BB) and to carbon monoxide (CO)-induced hypoxia (COH). Ten anesthetized cats were studied under two nonnoxic (control: CONT) and two hypoxic conditions. Four types of radioactive micro spheres were used to measure regional blood flow during CONT an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 20 شماره
صفحات -
تاریخ انتشار 2006